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LETI'ER TO THE EDITOR 

Geometric criterion for accurate conductance quantization in 
a lateral constriction 

V Polyanovsky 
Department of Nuclear Physics. n e  Weizmann Institute of Science, Rehovot, 76100 
brael 

Received 13 January 1992 

AbstmcL A novel approach to conductance quantization is presented. based on the 
reduction of the problem of electron motion in a ballistic constriction of arbitrary shape 
to a problem with separable variables. ?he approach gives a simple geometric criterion 
for accurate quantization in the plateau regions as well as sharp changes in conductance 
from one plateau 10 the next with varying minimal constriction width. The criterion is 
that at any p i n 1  along the Lnundary, the mnstriction width must be much smaller !han 
the radius of curvature of the boundaries. In a system satisfying the criterion, an electron 
wave propagates through the entire device without mode mixing, and new channels of 
propagation switch on and off sharply. 

The problem of ballistic transport in small devices of different geometries has recently 
received considerable attention [l] following the discovery of conductance quantiza- 
tion in lateral constrictions IZ-41. Most theoretical papers have so far used numerical 
methods [5-6]. Results obtained by these methods depend strongly on the exact shape 
of the boundaries, and do not point to any clear criterion for accurate quantization 
in a constriction of arbitrary shape. The only systematic approach to conductance 
quantization reported so far, giving (at least in principle) corrections of any desired 
accuracy, is the adiabatic approximation [7,8]. This approximation is plagued, how- 
ever, by the well known dilRculties in the explicit extraction of a small expansion 
parameter. Another essential shortcoming is the breakdown of this approximation 
(and of models used in [ 5 ] )  in regions where the constriction connects to reservoirs 
(as discussed by Landauer [9]), where the width, generally speaking, is unlimited. 

In the present paper, a novel approach to conductance quantization is presented 
which is free of the above limitations. it is based on the reduction of the problem 
of electron motion in a constriction of arbitrary shape to a problem with separa- 
ble variables. The new coordinates are defined by curvilinear trajectories along and 
across the constriction. These correspond to equipotential lines and lines of force in 
a curvilinear condenser and are uniquely determined by the shape of the constriction. 
Separation is possible if at every point the width d of the constriction, defined as the 
length of the trajectory across the constriction (figure I(a)), is much less than the 
radius of curvature of the boundaries r. When this condition is met, an electron wave 
propagates through the entire device without mode mixing, allowing accurate con- 
ductance quantization in the plateau regions. Furthermore, the condition guarantees 
abrupt switching on of new propagation channels when the minimal constriction width 
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Figure 1. Definition of lhe width for a mnstriction of arbitrary shapc (a) by means of 
conformal mapping into a sVaighl band (b). U- and vaordinate lines are shown by 
dashed and dot-dashed curves respeclively. 

is increased, leading to a sharp change from one plateau to the next. The condition 
d / r  K 1 is easily satisfied even far from the narrowest part of the constriction, where 
the adiabatic approximation breaks down. Moreover. for a smooth enough constrie- 
tion, where a semiclassical approximation may be used, the strong cancellations in the 
integrals due to the varying phases of the WKB cxponentials introduce exponentially 
small coefficients into the higher-order corrections in d / r .  

Consider a lateral constriction of arbitrary shape (figure I@)) with a square-well 
confining potential. Electron motion inside the well is free and obeys the Schrodinger 
equation A q ( z , y ) +  k 2 q ( r q y )  = 0, where q(z,y)  is the electron wavefunction, 
A = a2/8x2 + a?/ay?, !? = 3 m E  is the wavenumber and h = 1. Interaction with 
the walls yields the boundary conditions q( C,)  = @(C?)  = 0. 

Any simply connected domain (e.g. figure l(o)) can be conformally mapped into 
a straight band (figure l ( b ) )  [lo]. The appropriate analytical function, w = f ( ~ )  
( w  = u + iv; z = z + iy) transforms boundaries, C, and C, to the straight lines 
U = ul and v = U?, respectively. In the orthogonal curvilinear coordinates (U,.) 
the Schrodhger equation and the boundary conditions take the form [I11 

a q ( u . v ) + k ? e ' ( 2 1 , u ) q ( u . v ) = 0  Q ( ~ , u , , * A u / ~ ) = o  (1) 

Here A = 82/8u2 + a2/avZ, e ( u , v )  = Idz/dwl is the variable scale factor deter- 
mining thelength d s 2 = e 2 ( ~ , u ) ( d ~ ? + d v Z ) ,  v o = ( u U a + u 1 ) / 3 a n d A v = v , - v , .  
Equation (1) describes the motion of an electron with variable effective mass, 
m( U, v )  = me2(u, v), in the strip (figure l(b)).  

The above transformation is widely used in solving Laplace equations in elec- 
trostatics. There the u-coordinate lines lie along equipotential lines, and the u- 
coordinate lines lie along lines of force. 

We now define the constriction width as the length of the u-coordinate line section 
between the walls: d( u) = fUuL2 d v  e( U, v )  (figure @)). Defined in this fashion, the 
width pattern is uniquely set by the shape of the constriction and does not depend 
on the choice of the reference coordinate system (x,y). The radius of curvature, 
?-"(U), of the u-coordinate line is given by 

The width and the curvature, as defined above. uniquely determine the effective 
mass and thus the dynamics of an electron. Variables d ( u ) , r v ( u )  and e ( u , v )  are 

= && 1121. 
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connected by the relation 

yielding 

when 

Here 

Denoting the minimal radius of curvature 

one obtains Ir (u ,v ) l  2 r ( u )  and - , ( U )  < d ( u ) / r ( u ) .  ~ ( u )  corresponds, in many 
practical cases, to one of the boundaries. 

Thus, to leading order in the small parameter ?(U) < 1, the effective mass 
m ( u , u )  does not depend on U and the variables in equation (1) are separated. Such 
separation corresponds to thc separation of motion along U- and ucoordinate lines 
in real space (figure l(a)). 

Let us demonstrate how the inequality y ( u )  << 1 is satisfied in WO examples; 
symmetric hyperbola boundaries 16, 131 and co-focal parabola boundaries. In the first 
case, e ( u , u )  = c(cosh' U - cos? U ) ] / ? ,  v1 = a, v 2  = T - rr and the equation of 
ucoordinate lines is 

0 
.I!- - = 1. 

y' 
C' COY' 'U c' sin' u 

This yields 

i.e. -/(U) < 1 for any U when  COS'^ << 1 and for any 01 when cosh'u > 1. In 
the second case, e ( u , v )  = (U' + v?)~/', v, = fi, U' = V% and the equation of 
v-coordinate lines is 
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This yields 

i.e. -/(U) < 1 for any U when ( b  - a )  < a and for any a and b when ua > b. Thus 
the separation of the variables is surprisingly easy to justify far from the narrowest 
part of the constriction and the contact resistance is much less of a problem than was 
expected (cf [13]). 

?b describe electron motion along the constriction it is convenient to change 
variables from U to sw = Jx: d u  e ( u ,  U), which is the length of the v-coordinate line 
section between points U and U'. The 'average' distance along the constriction is 

Introducing the function <P(s, v )  = ( d ( u ) / A z ~ ) i / z U ( u ,  U ) ,  the solution of equation 
(1) can be written in the form CD(s,v) = C , ( s ) F , , ( u ) ,  which satisfies the 
boundary conditions. Here F,,(u) = -sin (nrr (yt i))  substituting into 
(1) yields 

Here the primes denote the derivative with respect to s. n = 1 . 2 . .  is the mode 
(channel) number, 

is the longitudinal wavenumber and 

bt'n,, 9 iVn,,>($) = d7) /~"(~l)l~'(s,7,)~~(~) 1: 
where M'(s,v) = k27d(s)/r(s.v) describes the mode coupling. Now one can solve 
equation (2) by iterations with respect to the small parameter d ( s ) / r ( s )  

In the leading approximation, equation (2) dcscribes the motion of an electron 
along U -  and ucoordinate lines without mode mixing. If d( s) varies slowly enough, 
then one can use the semiclassical solution of equation (2), 

1. 

C;(S) - (kn(s))-$ cxp (*i/'ds k , ( s ) )  

relating to the left-coming (+) and to the right-coming (-) waves. Thus for the 
n th  channel the problem is reduced U) the WKB treatment of electron motion in 
the effective potential Vn(s) = & ( n T / d ( s ) ) ' .  Reflection R and transmission 7' 
coefficients are diagonal with respect IO the channel number and can be obtained by 
standard methods 1141. 
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For channels with n < nmin = 
( k d m i n / r )  ( ( z )  is the integral part of I; d,,, = d(s,) is the minimal width of the 
constriction), an electron undergoes above-barrier reflection. If only two conjugated 
turning points k,(s f is') = 0 exist, then one can use the Kembel formula, 

The bottleneck acts as a potential barrier. 

yielding the exact result for a parabolic potential. If n = nmin in the vicinity of the 
barrier top, where the effective potential may be approximated by a parabolic one, 
then the Kembel formula yields 

If n > nmin for sub-barrier transmission, then 

where k,(s,,?) = 0. Since channels with 71 < nmln have T,, zz 1 and the other?. 
have T,, << 1 ,  it follows that only n,",,, channels give significant contributions to the 
conductivity G = (e?/.) E,, T,,. Step-like changes in n,,, as a function of kd,,, 
cause the conductance quantization [2,3]. The shape of the steps in G is determined 
by (3), giving 

6 G ( z )  = ( e ' / r )  I 1 + ( exp( -? - r - z /  " I/----r d,,,,"d'& 

where z = ( k d , , , / ~ )  - nmln 6 1 (cf [7]). Because dy0 < 2 / r ( s 0 ) ,  the condition 
d ( s )  << r(s) provides not only accurate quantization in the plateau region, where 
G = (e2/r)n,,, [1+ nmlnO((d/r)?)] ,  but also guarantees very small widths of steps 
between adjacent plateaus (lzl < & d d ( s n ) / r ( s n ) ) .  

Consider now corrections relating to the non-separability of variables, which 
causes interchannel scattering. Using a lelt-coming wave in the nth channel as an 
initial condition for the iteration procedure 

one obtains from (3) for the reflection coeficient (n  f nz) 

Under the assumptions made, transmission and reflection coelficients obey the 
current conservation law in the form Cm T,, = 1 - E, Rn,. According to 
the WKB approximation, the width d ( s )  is assumed to vary essentially on the scale 



L190 Letter to ihe Editor 

L > l/k,,. If  the radius of curvature does not vary faster than the width, then using 
the asymptotic limit for an integral of a quickly oscillating function one can obtain 
the following estimate for the reflection coefficient 

where both n and m correspond to the channels where an electron undergoes above- 
barrier reflection (kn,m # 0). A more detailed analysis of solutions of equation (2), 
which are analogous to the one given in [SI, shows that all other corrections are also 
exponentially small for a constriction with smooth enough boundaries. 

In conclusion, a novel approach 'LF presented which gives a simple criterion for 
accurate conductance quantization in a constriction of arbitraly shape. The criterion 
is that at any point of the constriction the width must be much smaller than the radius 
of curvature of thc boundaries. This condition can easily be satisfied even far from 
the narrowest part of the constriction. In a system satisfying the criterion, an electron 
wave propagates through the entire device without mode mixing, and the switching on 
of new channels of propagation is sharp. This provides not only accurate conductance 
quantization in the plateau region, but also sharp changes from one plateau to the 
next. 

Thc author is grateful CO Professors M Ya Azbel, Y Gefen, I Goldhirsch, S Gurvitz 
and Y Imy  for stimulating discussions. 
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